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Boundary crisis is a mechanism for destroying a chaotic attractor when one parameter is varied. In a
two-parameter setting the locus of the boundary crisis is associated with curves of homoclinic or heteroclinic
bifurcations of periodic saddle points. It is known that this locus has nondifferentiable points. We show here
that the locus of boundary crisis is far more complicated than previously reported. It actually contains infinitely
many gaps, corresponding to regions �of positive measure� where attractors exist.
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The experimental study of nonlinear dynamical systems is
necessarily limited to the observation of attractors and the
transitions that they undergo as one or more parameters are
varied. Therefore, it is important to study possible transitions
also from a more theoretical point of view in order to predict
what one expects to see in experiments. For this reason, tran-
sitions from steady state or periodic attractors to a regime
where attracting chaotic dynamics occurs remains an active
field of research.

It is well known that the existence of a chaotic attractor
can end abruptly in a boundary crisis when a parameter is
varied �1–4�. A boundary crisis occurs when the attractor
collides with a periodic orbit on its basin boundary. This
periodic orbit is called the crisis orbit. Boundary crisis is a
common phenomenon that can be observed in experiments.
In many physical experiments chaotic motion is measured as
a bounded but seemingly random variation of the amplitude
of an underlying oscillation. In a boundary crisis, this chaotic
variation suddenly stops and the motion reverts to a regular
or even constant-amplitude oscillation. For example, the la-
ser experiment in �5� measures the power spectrum of laser
light from an optically injected diode laser. A broad power
spectrum indicates that the attractor is chaotic. At a boundary
crisis, the output suddenly switches to light with constant
intensity. Similarly, in the leaky faucet experiment �6�, the
time between water drops is measured representing the range
of variation for the attractor. In a boundary crisis, the time
between drops suddenly changes from irregular to periodic,
while the mean drop frequency jumps to a completely differ-
ent value.

Since boundary crisis is so common, one would expect
that slight perturbations in the experimental setup, i.e., small
variations of other parameters in the system, do not influence
the occurrence of this phenomenon. Indeed, it should be pos-
sible to trace the boundary crisis in a plane of two param-
eters. Such a two-parameter study was done in �7,8�, where
the authors reported the existence of a piecewise-smooth
curve of boundary crises. They found that the curve is only
piecewise smooth due to changes in the period of the crisis
orbit associated with the boundary crisis. Along a smooth
segment of the curve the boundary crisis is organized by,

effectively, the same crisis orbit. At a so-called double-crisis
vertex the curve is not differentiable, and the boundary crisis
switches to a crisis orbit with a different period.

From a mathematical point of view, the boundary crisis is
a global change in the dynamics that is caused by a tangency
between a stable and an unstable manifold. The chaotic at-
tractor is contained in the closure of this unstable manifold,
which is associated with either the crisis orbit or a periodic
orbit on the attractor. The stable manifold is always associ-
ated with the crisis orbit and forms the basin boundary of the
attractor. There are three global phenomena that can occur if
two such manifolds become tangent. First, a boundary crisis
occurs if the stable manifold is indeed the basin boundary
and the closure of the unstable manifold is equal to the at-
tractor at the moment of tangency. Second, if the latter holds,
but the stable manifold is not the basin boundary, that is, the
crisis orbit lies inside the basin of attraction, then an interior
crisis occurs and the chaotic attractor suddenly grows in size
�4,9�. Third, if the attractor is contained in but is smaller than
the closure of the unstable manifold, then a basin boundary
metamorphosis occurs, where the boundary of the basin of
attraction becomes fractal �10–13�.

The locus of tangency between a stable and an unstable
manifold is a smooth curve in a two-parameter plane. How-
ever, the global manifestation of this tangency changes type
at points where another tangency curve intersects it. Indeed,
at a double-crisis vertex two smooth arcs intersect: one arc
changes type from a boundary crisis to an interior crisis, and
the other from a boundary crisis to a basin boundary meta-
morphosis �7,8�.

It seems that everything is known about the boundary
crisis, but this is actually not the case. By definition, a cha-
otic attractor implies the existence of infinitely many peri-
odic orbits with stable and unstable manifolds. We report
here that, in a two-parameter setting, there are actually infi-
nitely many curves of tangencies between two manifolds,
and there are infinitely many intersections between tangency
curves. In effect, it is impossible to mark a curve segment
that is associated with a boundary crisis. The locus of bound-
ary crisis is interrupted by infinitely many gaps, so that it
forms a fractal set.

We consider the Hénon map �14� as the paradigm ex-
ample of a two-dimensional dissipative map. We use the
definition, given in �15�,*Electronic address: H.M.Osinga@bristol.ac.uk
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�x,y� � �� + �y − x2,y� �1�

that is obtained by a parameter-dependent linear scaling of
the variables from the standard definition �14�. The param-
eters � and � remain unchanged in this coordinate transfor-
mation so that all crisis and tangency curves in the �� ,��
plane are identical for both definitions. The Hénon map has
the property that the determinant of the associated Jacobian
matrix is constant and equal to −�. Hence, the map is dissi-
pative for �� � �1. An attractor exists as soon as �
�− 1

4 �1−��2, and it is believed that the upper bound for � is
a ��-dependent� boundary crisis.

Simó �3� has extensively studied the Hénon map for fixed
�=0.3 and varying �. As � increases, a period-doubling
route to chaos occurs and a strange attractor exists over a
range of �. However, this interval is interspersed with so-
called periodic windows where the attractor is not chaotic. A
boundary crisis occurs at ��1.426 921 2 via a tangency be-
tween the manifolds of two fixed points �3�. Figure 1 shows
the moment of tangency and illustrates how the strange at-
tractor, which is formed by the closure of the unstable mani-
fold Wu�p0� of the fixed point p0 touches its own basin
boundary, formed by the stable manifold Ws�p1� of the other
fixed point p1. Hence, p1 is the crisis orbit.

We focus our attention on the locus of tangency between
Wu�p0� and Ws�p1� in the two-parameter setting. As � and �
are varied continuously, the fixed points p0 and p1 vary con-
tinuously, and so do the manifolds Wu�p0� and Ws�p1�. The
moment where these two manifolds are tangent forms a
curve in the �� ,�� plane, which we denote by T1. Reference
�7� reports that T1 corresponds to a boundary crisis on the

segment between the double-crisis vertices V0= �2,0� and
V1��0.973 005, 0.558 61�. This segment of T1, shown in
Fig. 2�b�, is almost a straight line; see also ��7�, Fig. 3�. �The
trained eye can observe “ripples” along the curve in Fig. 3 of
�7�, which are clarified in this paper.�

FIG. 1. Manifolds of the Hénon map �1� for �� ,��
= �1.426 921 2, 0.3�. The unstable manifold Wu�p0� of the fixed
point p0 is tangent to the stable manifold Ws�p1� of the fixed
point p1.

FIG. 2. Bifurcations along the curve T1 of tangency between
Wu�p0� and Ws�p1� from the double-crisis vertices V1 to V0. The
chaotic attractor that exists just to the left of T1 contains periodic
windows �a�, each of which is initiated by saddle-node bifurcations
that cross T1 transversely �b�. The labels in �a� indicate the periods
of the periodic windows and the corresponding bifurcating periodic
orbits are indicated in �b�.
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Figure 2�a� shows a projection onto the �� ,x� plane of the
attractor just to the left of T1, that is, just before the boundary
crisis, along the curve segment ��T−0.01,�T�, for ��T ,�T�
on T1 in between V0 and V1. The picture clearly shows peri-

odic windows, where, for a range of �, the attractor does not
densely fill one large interval of x values. Inside these peri-
odic windows the attractor is, in fact, a k-periodic orbit pk
that undergoes a sequence of period-doubling bifurcations
until a chaotic attractor emerges that consists of k pieces. The
period k, i.e., the number of pieces, is labeled in Fig. 2�a�.

The start of a k-periodic window is a saddle-node bifur-
cation. We computed curves of saddle-node bifurcations of
k-periodic orbits in the �� ,�� plane using continuation with
CONTENT �16�. Figure 2�b� shows how these curves �in gray
for the periods labeled� intersect T1 transversely. The range
of � for the two figures is the same so that one can compare
the start of the periodic windows in Fig. 2�a� with the inter-
sections of the saddle-node bifurcation curves with T1 in Fig.
2�b�. Since the attractor is a periodic orbit just to the right of
each saddle-node bifurcation curve, each intersection point
on T1 is an end point of the boundary crisis. The ripples that
one can observe in ��7�, Fig. 3� appear to lie exactly in the
regions where the periodic windows exist.

The end of each k-periodic window, by which we mean
the moment where the attractor becomes one large attractor
again, is an interior crisis. The interior crisis is caused by a
tangency of the manifolds of the k-periodic saddle orbit that
appeared in the saddle-node bifurcation at the start of a
k-periodic window. Each of these k-periodic tangencies lies
on a curve Tk of k-periodic tangencies in the �� ,�� plane.
The tangency curves Tk lie almost parallel to the k-periodic
saddle-node bifurcation curves, and also intersect T1 trans-
versely. All such intersections points are double-crisis verti-
ces, that is, to the left of T1 each curve Tk is an interior crisis,
but to the right of T1 it is a boundary crisis with a crisis orbit
of period k. The segment of T1 in between a k-periodic
saddle-node bifurcation curve and the associated tangency
curve Tk does not correspond to a boundary crisis; namely,
the attractor is relatively small here and far away from its
basin boundary. Indeed, close to the saddle-node bifurcation
curve, the attractor is not even chaotic. Hence, instead of a
boundary crisis, these segments of T1 instead cause a basin
boundary metamorphosis.

In order to illustrate what happens along T1, we checked
the dynamics in a neighborhood of the double-crisis vertex at
the end of the first 5-periodic window in Fig. 2�a�, approxi-
mately at ��5 ,�5�= �1.490 17, 0.265 53�. Figure 3 shows
from top to bottom the attractors and their basins for param-
eter values just below, to the left, and above ��5 ,�5�, respec-
tively. Figure 3�a� shows the situation for ��5 ,�5−0.005�,
which is as expected for parameter values close to a bound-
ary crisis: the attractor and its basin boundary are similar to
the manifolds Wu�p0� and Ws�p1� in Fig. 1. For a slightly
larger value of � the curve T1 is reached, the manifolds
Wu�p0� and Ws�p1� become tangent and a boundary crisis
takes place.

Figure 3�b� is for ��5−0.01,�5�, which is inside the first
5-periodic window in Fig. 2�a�. While the basin of attraction
is virtually the same as in Fig. 3�a�, the attractor is a periodic
orbit of period 5. Indeed, moving from ��5 ,�5−0.005� to
��5−0.001,�5� is very similar to entering the 5-periodic
window from the right in Fig. 2�a�: a �reversed� interior crisis
occurs followed by a �reversed� period-doubling sequence to
a 5-periodic attracting orbit.

FIG. 3. Basins of attraction with the attractors of the Hénon map
�1� for �� ,�� near ��5 ,�5�= �1.490 17, 0.265 53�. The phase por-
traits are for ��5 ,�5−0.005� �a�, ��5−0.01,�5� �b�, and ��5 ,�5

+0.005� �c�.
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The transition from ��5−0.01,�5� to the situation in Fig.
3�c� involves a crossing of T1. However, no boundary crisis
takes place. Figure 3�c� shows that the attractor persists—it
is a 10-periodic orbit here—but the basin of attraction has
changed dramatically. As predicted, a basin boundary meta-
morphosis takes place.

The description of the 5-periodic window is typical for all
other periodic windows along T1. Even though we labeled
only eight of them in Fig. 2�a�, one must expect infinitely
many periodic windows that cannot be observed at the scale
of the figure. For example, there are two saddle-node bifur-
cation curves of period 9 and also two of period 7 in Fig.
2�b�, but there is only one periodic window each in Fig. 2�a�.
A zoom of the bifurcation diagram does reveal the other two
periodic windows in the parameter region indicated by the
intersection points. For each of these possibly infinitely
many periodic windows the associated curve segment on T1
in between the double-crisis vertices V0 and V1 causes a ba-
sin boundary metamorphosis, rather than a boundary crisis.
Hence, each of these segments is a gap on T1, where this
curve is not associated with a boundary crisis. The recursive
structure of the periodic windows suggest that the gaps are
created in a Cantor-like process, so that the locus of bound-
ary crisis along T1 is a fractal set.

In summary, the overall structure of the �� ,�� plane is
drastically different from what is reported in �7,8�, where it is

suggested that an attractor exists up to a piecewise-smooth
curve that ranges, roughly, over �� �0.56,4.2�; see also ��7�,
Fig. 3�. We have shown that there are likely infinitely many
gaps along the curve segment in between the double-crisis
vertices V0= �2,0� and V1��0.973 005, 0.558 61�, where
the boundary crisis is reportedly caused by a tangency T1

between the manifolds of fixed points �7�. In fact, the Hénon
map has infinitely many of such tangency curves that criss-
cross the �� ,�� plane. Gaps in the locus of boundary crisis
occur where tangency curves intersect. Hence, it is not cor-
rect to think that the locus of boundary crisis forms a single
piecewise-smooth curve with a finite number of nondifferen-
tiable points �the double-crisis vertices�. The recursive pro-
cess of removing gaps along tangency curves likely leads to
a fractal set as the locus of boundary crisis.

In an experiment, including a numerical one, it is difficult
to avoid jumping over smaller gaps when attempting to trace
a locus of boundary crisis. As a result a misleading bifurca-
tion diagram may be obtained. We point out that the gaps do
not necessarily correspond to attractors with a small basin,
although there does seem to be a relationship between the
size of the basin and the width of the gap. In �17� a large gap
was reported in a three-dimensional dynamical system that
appears to be bounded in exactly the same way as discussed
here.
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